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Stochastic dynamics is generated by a matrix of transition probabilities. Certain eigenvectors of this matrix
provide observables, and when these are plotted in the appropriate multidimensional space the phases �in the
sense of phase transitions� of the underlying system become manifest as extremal points. This geometrical
construction, which we call an observable representation of state space, can allow hierarchical structure to be
observed. It also provides a method for the calculation of the probability that an initial points ends in one or
another asymptotic state.
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I. INTRODUCTION

In a previous publication �1�, we established the relation
between phases, including metastable phases, and eigenvalue
degeneracy, where the eigenvalues in question are in the
spectrum of a matrix of transition probabilities. The context
for this use of stochastic dynamics is an approach to non-
equilibrium statistical mechanics based on the master equa-
tion �2�. In further work, these phases played a role in defin-
ing coarse grains in statistical mechanics �3� as well as in
discerning community structure in a network �4�.

In the present paper we re-examine the occurrence of mul-
tiple phases. For the case of m+1 phases, there turns out to
be surprising simplicity in a certain m-dimensional space.
This is a space in which the points of the state space are
given coordinate values corresponding to the first m observ-
ables, where by observable we mean a slow eigenvector �in
our convention, a left eigenvector� of the transition matrix.
Remarkably, although one might expect no particular struc-
ture to emerge from this representation, for the case of a
phase transition �i.e., eigenvalue degeneracy� the points form
a simplex, which is to say, there is no more than the minimal
number �m+1� of extremal points for the convex hull of the
set of state space points in this representation. We call this
geometric structure the observable representation of state
space, and it provides a practical method for the computation
of the probability that an arbitrary initial state reaches one or
another phase. This leads in turn to potential applications far
removed from statistical mechanics. Thus one can have im-
perfectly defined classes of final states �i.e., they are similar
but not exactly the same� for a complex random walk and be
able to compute probabilities for arriving at each class. In
fact one need not know the classes ahead of time. Moreover,
this can be done for dynamics with relatively large state
spaces. For a state space of cardinality N, the stochastic dy-

namics is generated by a matrix with N2 elements—which
may be daunting. Nevertheless, our method requires rela-
tively little information about that matrix: the first few eigen-
values and eigenvectors. Hence, for sparse matrices, which
characterize many random walks, these quantities can be
computed.

A variation of the method also provides a striking dia-
grammatic representation of metastable phases, particularly
when there is a hierarchical treelike structure, as occurs in
spin glasses. One can see shorter and shorter lived �meta-
stable� phases peel away �in reversed time� from those that
are closer to the root of the tree. In previous work �5� we
explored models of this sort, but in the present article there is
fuller understanding and exploitation of the observables. We
have also studied other features of the transition matrix spec-
trum, for example situations where the eigenvalues do not
drop abruptly as the index increases. This should enhance the
utility of this work in the spin glass context �6�.

This paper has two principal sections. In Sec. II we de-
velop the mathematical basis for the assertions just made,
and in Sec. III we provide examples in which those asser-
tions are realized. Because of the density of mathematical
estimates, we begin Sec. II with an overview, which should
allow an understanding of the examples without having to go
through too many details. The remainder of that section is
devoted to those details. Finally, in Sec. IV we discuss prob-
lems that may benefit from this treatment as well as math-
ematical issues, such as whether certain of our hypotheses
might be weakened.

II. PHASE TRANSITIONS AND EXTREMALS
IN THE SPACE OF OBSERVABLES

A. Overview

The states of the system we study are given by x ,y�X,
and the system moves from state to state in discrete time
according to transition probabilities given by a matrix R. For
convenience in dealing with the eigenfunctions of R we de-
fine it as follows:
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Rxy = “Pr�x ← y�”

= Pr�state at time �t + 1� is x�state at time t is y� .

�1�

For the processes we study there is a unique stationary dis-
tribution, p0�x�, which satisfies p0=Rp0, with the p0 on the
right of R. For this eigenvalue of R, �0�1, the left eigen-
vector is simply A0�x�=1, corresponding to the conservation
of probability, i.e., �x�XRxy =1, because from a state y you
have to go somewhere.

The eigenvalues of R fall on or inside the unit circle �7,8�
and we order them by decreasing magnitude: �0�1� ��1 �
� ��2 � � ¯ . The corresponding right and left eigenvectors
are respectively pk and Ak, and satisfy

Rpk = �kpk, AkR = �kAk, k = 0,1, ¯ . �2�

Our story begins when several of R’s eigenvalues are
nearly degenerate with �0=1. As we showed in Ref. �1�, this
heralds a phase transition in the system, enabling the realiza-
tion of an old dream relating eigenvalue degeneracy and
phase transitions �9�. Our method of proof involved those
left eigenvectors of R that correspond to the slowest eigen-
values �those nearest to 1�. We now find that not only was
this convenient for the proof, but it also provides a graphic
illustration of phase structure along with the possibility of
computing auxiliary quantities such as asymptotic probabili-
ties and time dependence.

We suppose then that m of the eigenvalues �after �0� are
very close to 1 and that �m+1 is not. We focus on the left
eigenvectors of R. If X has N states, then we can form an m
by N array of quantities, Ak�x�, with k=1, . . . ,m, and x�X.
Think of the m-tuple (A1�x� , . . . ,Am�x�) as an m vector, with
one such vector for each x�X. All N of these can be plotted
in Rm and we surround this set of points with a minimal
convex surface, the convex hull. In general, such a surface
can have many extremal points. We will show, however, that
because of the eigenvalue conditions, the convex hull of this
particular set of points has �essentially� just m+1 extrema,
around each of which many, many points of X may cluster.
These extremal points are what correspond to the phases. To
see what they look like in a typical case, with m=2, see Fig.
2. This is a plot of A1�x� vs A2�x�. The vertices of the triangle
that you see are actually composed of many points �shown in
more detail in Fig. 3�.

There is a straightforward intuitive way to understand this
bunching. The phases are in a sense dynamically far from
one another. That is, if you start in one phase you expect to
stay there for a long while before going to any other phase.
This means that there is a restricted dynamics within that
phase that nearly conserves probability. The bunching of
points in one phase �as we define it� means that for all points
in that phase Ak�x� has very nearly the same value �for every
k=1, . . . ,m�. Let us see why that happens. Consider the ei-
genvalue equation for Ak applied t times, where t is small
enough so �k

t is still close to one, so close that we will now
treat it as unity. Then

Ak�y� � �
x

Ak�x�Rxy
t . �3�

Now restrict x and y to be such that Rxy
t is not small, so we

would say x and y are in the same phase. Then for this
restriction of R, Eq. �3� still holds, and we appear to have a
number of eigenvectors of eigenvalue close unity. But we
also have 1��xRxy

t , because little probability escapes the
phase. This last expression says that a constant on the phase
plays the role of A0 for the restricted time evolution. If we
now make the further assumption that relaxation within the
phase is relatively rapid, then other eigenvalues of the re-
stricted R are significantly smaller than 1, and all the appar-
ent eigenvectors Ak , as well as the constant pseudo-A0, must
in fact be proportional to one another. In other words, the
Ak’s �k�m� are constant on the phases.

The actual proof proceeds a bit differently. Its heart is Eq.
�21�, which is essentially a statement of the eigenvector
property of the A’s. In this equation, we write py

t �x� in place
of Rxy

t , since �as just observed� the latter is the probability
that starting from y you reach x in t time steps.

B. Additional properties of the stochastic matrix

The matrix R is assumed to be irreducible. This implies
that the eigenvalue 1 is unique and that its eigenvector, p0
�the stationary distribution�, is strictly positive

�1 � 1 and �
y�X

Rxyp0�y� = p0�x� � 0, " x . �4�

Since no detailed balance assumptions are made for R, it
need not be diagonalizable nor have a spectral representation
in terms of eigenvectors. Nevertheless, we will assume that
for the eigenvalues that concern us �those near 1� each ei-
genvalue possesses one or more eigenvectors. The orthonor-
mality condition for the eigenvectors, 	Ak � p�
=�k�, still
leaves a single multiplicative factor for each pair �Ak , pk�.
The stationary state p0 is naturally normalized by �p0�x�
=1, which fixes A0�x�=1 for all x. For the other A’s, consis-
tent with A0, we normalize by the condition

max
x

�Ak�x�� = 1, " k . �5�

Our principal assumption is that for some integer m,
�1 ,�2 , . . . ,�m are real and close to �0�1. Specifically, this
closeness is taken to mean that there exists a range of t
�integer times� such that for some ��1

1 − �k
t = O���, 1 � k � m . �6�

In most of our development we further assume that the ��k�
for k�m are much smaller than �m, that is,

��k
t � � 1, k � m + 1. �7�

Remark. If R has eigenvalues near −1 �or other roots of
unity�, our arguments go through for R2 �or other appropriate
power of R, provided that power is not so high that Eq. �6� is
violated�. See Sec. 8 of Ref. �10�.

The spectral decomposition of R is written
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Rt = �p0
	A0� + �
k=1

m

�k
t �pk
	Ak� + ��m+1

t �B�t� �8�

with

B�t� = �
k�m

�k
t

��m+1�t
�pk
	Ak� �9�

�11�. We assume that �m+1
t B is uniformly small in the sense

that for any subset Y �X and any x�X

��m+1
t � �

y�Y

�Byx
�t�� = O��� � O�1� . �10�

Remark. Instead of the stochastic matrix “R” we sometimes
use an alternative matrix, “W,” which can be thought of as
the generator of continuous time stochastic evolution. Sche-
matically W= �R−1� /	t. W will be called a stochastic gen-
erator. In fact it generates the usual master equation. The
constraints on W are that its off-diagonal matrix elements
must be non-negative and that its column sums must vanish.
Its spectrum consists of zero and points to the left of the y
axis in the complex plane. Eigenfunctions are unchanged
from the R representation �since the matrices differ only by a
multiple of the identity�. The advantage of using W is that in
producing randomly generated matrices one need not be con-
cerned that the column sum of off-diagonal terms be less
than 1.

C. The phases

Under the foregoing hypotheses and under a separation
hypothesis “S” to be introduced below, we will construct
m+1 subsets, ultimately to be identified as the phases,
X�1� , . . . ,X�m+1�, of X with the following properties:

�1� the sets, X�1� , . . . ,X�m+1�, are disjoint;
�2� on each X���, the Ak are nearly constant, for 1� �

�m+1 and 1�k�m;
�3� the complementary subset of � j=1

m+1X�j� has small p0
weight. Specifically

�
y��X�j�

p0�y� � 1 −
m�

�
− O��� , �11�

for a constant, � such that � /� is small �and ��1−�m
t �; and

�4� The X�1� , . . . ,X�m+1� are essentially unique in a sense to
be described below.

Remark. Our phases are a bit larger than what are conven-
tionally called phases and include states that rapidly transit to
the usual phases. See Sec. II H.

D. Proof of the existence of the phases

For any pair x ,y�X, define

py
t �x� = Rxy

t . �12�

py
t �x� is the probability that a system in state y at time 0 is in

x at time t.
Let m�N−1. Consider the following geometric

construction in Rm: for any y�X, form the vector

A�y�� (A1�y� , . . . ,Am�y�)�Rm. This gives a set A of N vec-

tors in Rm. Let Â be the convex hull of A.

The first remark is that the vector 0��0,0 , . . . ,0� is in Â.
This follows from the orthogonality relation, 	Ak � p0
=0,

for k�1. Thus

�
y�X

p0�y�A�y� = 0 , �13�

so that 0 is a convex combination of the vectors of A.
As a consequence, one can find m+1 points y�

*, 1� �
�m+1, such that the vectors

E� � A�y�
*� �14�

are extremal points of Â, and such that 0 is a convex com-
bination of them �12,13�. There may be several ways to
choose these points y�

*, but we shall prove that, in fact, the
resulting vectors E� �1� � �m+1� are uniquely defined up
to a small ambiguity to be stated later. By the selection of the
E�, we can find 
�, 1� � �m+1, with 0�
��1, ��=1

m+1
�

=1 such that

�
�E� = 0 . �15�

We have found that there are subsets of these points that
are separated from one another in a particular way, and we
add to our assumptions the following “separation” hypoth-
esis �S�.

Hypothesis S. For each � let

�� = min
k=1,. . .,m, k��

�E� − Ek� , �16�

and define


 � min
�

��

�E��
. �17�

Then our hypothesis is that the extrema y�
* can be selected so

that �in addition to Eq. �15�� they satisfy the following:

1 − �m
t = � � 
 � O�1� �18�

�for an appropriate range of t�.
We next observe that by definition

�k
t Ak�y�

*� = 	Ak�py
�
*

t 
 , �19�

so that for all �

„�1
t A1�y�

*�,�2
t A2�y�

*�, . . . ,�m
t Am�y�

*�… = �
y�X

py
�
*

t �y�A�y� .

�20�

Because 0��k�1, k�m, the vector on the left side of

Eq. �20� is in the convex set Â; moreover, its distance from
the extremal vector E�= (A1�y�

*� , . . . ,Am�y�
*�) is less than

1−�m
t . Since �ypy

�
*

t �y�=1, we have from Eq. �20�

E� − „�1
t A1�y�

*�,�2
t A2�y�

*�, . . . ,�m
t Am�y�

*�…

= �
y

py
�
*

t �y�„E� − A�y�… . �21�
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The idea of the next few steps is as follows. For the case
m=1 the above equation immediately yields the desired re-
sult. On the left you have something that is very small. On
the right a sum of products, each factor of which is positive.
Therefore, one or the other of these factors must be small.
This means that if y can be reached from y* �with moderate
probability�, then A1�y� cannot be much different from
A1�y*� �in this case E1 is just A1�y*��. For m�1 the positivity
of �E�−A�y�� is not manifest, so that it is useful to change
coordinates and take as origin the vertex of the cone based
on E�. In this way all distances away from the vertex are
positive in an appropriate coordinate system. Equation �21�
then yields the near constancy of the A’s on the phase.

We now pick a particular �, and consider the translated set
E�−A in Rm, i.e., the set of vectors �E�−A�y� �y�X
. Then,

the vector 0 is extremal for the convex set E�−Â. We prove
the following lemma:

Lemma. Consider a finite set of vectors w�y��Rm, y�X,
such that 0 is an extremal point of the convex hull of those
vectors. Let w0�Rm be a vector in the convex hull of the
�w�y�
. Thus

w0 = �
y�X

q�y�w�y� , �22�

with 0�q�y��1, �q�y�=1. We further assume that �w0 �
�� for some positive �, where the norm is the maximum
norm, as in Eq. �5�. Then,

�i� There exist m independent linear forms on Rm,
h1 , . . . ,hm, such that hj(w�y�)�0, hj�w0���. Moreover,
hj(w�y�)=0, " j, if and only if y is in the nonempty set, �y
,
associated with the extremal point 0. These forms can be
scaled so as to give the same distances that we now use in
Rm.

�ii� Let a be a strictly positive real number. Define

X�a� = �y � X�hj„w�y�… � a for all j = 1, . . . ,m
 . �23�

Then

�
y�X�a�

q�y� �
m�

a
. �24�

Proof. Assertion �i� comes from the fact that zero is an
extremal point of the convex hull of the vectors w�y� for y
�X. The linear forms are essentially a local coordinate sys-
tem with the extremal at the vertex. Positive coordinates, not
necessarily orthogonal can be defined for this cone. Since the
scale of this coordinate system in general includes an arbi-
trary multiplicative constant, it can be taken to be the same
as that of the original Rm. Therefore the coordinates of w0 in
this system remain of order �.

Assertion (ii): One has, by the hypotheses of the lemma

� � hj�w0� = �
y�X

q�y�hj�w�y�� � �
�y�X�hj„w�y�…�a


aq�y� .

Thus,

�
y�X�a�

q�y� � �
j=1

m

� �
�y�X�hj„w�y�…�a


q�y�� �
m�

a
. �25�

This proves the lemma.
Remark. In practice, the “m” appearing in Eq. �25� may be

a severe overestimate. This is because points in other phases
will generally exceed a for all components of the linear
forms.

Application of the lemma. For every �, 1� � �m+1, we
apply the lemma to the set of vectors and numbers

w�y� = E� − A�y� , �26�

w0 = E� − „�1
t A1�y�

*�,�2
t A2�y�

*�, . . . ,�m
t Am�y�

*�… , �27�

q�y� = py
�
*

t �y� , �28�

� = �1 − �m
t ��E�� . �29�

These vectors and numbers satisfy the hypotheses of the

lemma, because 0 is extremal for E�−Â �see Eq. �21��,
�w0 � �1−�m

t , and �E� � �1. By the lemma, we can define for
every �, 1� � �m+1, m independent linear forms h�,j, j
=1, . . . ,m, such that if we define

X��a�� = �y � X�h�,j„E� − A�y�… � a�, j = 1, . . . ,m
 ,

�30�

for a positive real number, a�, then from Eq. �30� and the
lemma

�
y�X��a��

py
�
*

t �y� � 1 −
m

a�

�1 − �m
t ��E�� � 1 −

m

��

�1 − �m
t � ,

�31�

where ��=a� / �E��.
We now make use of hypothesis S. Because ��
 we can

find �� such that �����
. This allows the probability of
remaining within a phase to be large �as in Eq. �31��, while
maintaining near constancy of the Ak’s on that phase. Spe-
cifically, from Eq. �30� we have

�Ak�x� − Ak�x��� � a� = ���E�� � 
�E�� � 


� O�1�, with x,x� � X���. �32�

We next establish that these phases nearly exhaust X in
the sense of the probability measure p0. The spectral decom-
position of R gives

py
�
*

t �y� = Ryy
�
*

t = p0�y� + �
k=1

m

�k
t pk�y�Ak�y�

*� + ��m+1
t �Byy

�
*

�t�

�33�

But

� 
�E� = 0 , �34�

with 0�
��1, ��=1
m+1
�=1. By the definition of E� this

means
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�
�=1

m+1


�Ak�y�
*� = 0, 1 � k � m . �35�

We next sum Eq. �33� for each � with coefficient 
� to give

�
�=1

m+1


�py
�
*

t �y� = p0�y� + 0 + ��m+1
t ��

�=1

m+1


�Byy
�
*

�t� = p0�y� + O��� .

�36�

Now sum over y��kXk�a�, i.e., all y in the phases, and
interchange sums

�
�=1

m+1


� �
y��kXk�ak�

py
�
*

t �y� = �
y��kXk�ak�

p0�y� + O��� . �37�

Then we deduce

�
y��kXk�ak�

py
�
*

t �y� = �
y�X��a��

py
�
*

t �y� + �
y��k��Xk�ak�

py
�
*

t �y�

� �
y�X��a��

py
�
*

t �y� � 1 −
m

� ��1 − �m
t � ,

�38�

where the last step uses Eq. �31�. By Eqs. �37� and �38� �and
using �=min ���,

�
y��Xk

p0�y� = �
�


� �
y��Xk

py
�
*

t �y� + O��� �39�

��
�


� �
y�X�

py
�
*

t �y� + O��� �40�

��
�


��1 −
m

�
�1 − �m

t �� + O��� �41�

because �
�=1. Therefore, by Eq. �25�

�
y���X��a��

p0�y� � 1 −
m

�
�1 − �m

t � + O��� . �42�

This proves statement �11� with X���=X��a��.
On each phase X���, one has by definition

0 � h�,j„A�y�
*� − A�y�… � a�, j = 1, . . . ,m . �43�

This implies that the coordinates of the vector A�y�
*�−A�y�,

for y�X���, are O�a�� for k=1, . . . ,m, because the h�,j are
linearly independent forms. This establishes Eq. �10�.

Remark. If m is large �for example where many meta-
stable phases are present� the factor m� may not be smaller
than 1. In that case there may not be the clean separation of
phases that we discuss here.

E. Proof of the uniqueness of the phases

We start from Eq. �2� for Ak and Rt,

�k
t Ak = AkR

t, 1 � k � m . �44�

The right hand side of this equation can be split by summing
over each phase X��� and over the set of points of X outside
of any phase

�k
t Ak�y� = �

�=1

m+1

� �
x�X���

Ak�x�Rxy
t � + �

x���X���
Ak�x�Rxy

t �45�

We next estimate each sum in Eq. �45�. One has �Ak�x� � �1,
by normalization. Moreover,

�
x���X���

Rxy
t � K

1 − �m
t

��

+ O��� , �46�

where K is O�1�, as will be shown below in Sec. II G, and in
particular Eq. �61�. Choose a point x����X��� for 1� � �m
+1. One has

�
x�X���

Ak�x�Rxy
t = Ak�x���� �

x�X���
Rxy

t

+ �
x�X���

„Ak�x� − Ak�x����…Rxy
t . �47�

The last sum in Eq. �47� is O�a���x�X���Rxy
t , using Eq. �32�,

which is in turn O�a��, since �x�X���Rxy
t �1. Therefore, Eq.

�45� becomes

Ak�y� = �
�=1

m+1 � 1

�k
t �

x�X���
Rxy

t �Ak�x���� + O�a�� + O��� ,

�48�

with a�max1���m+1a��O�1�. Moreover, �k
t =1+O���, so

that finally

Ak�y� = �
�=1

m+1

q��y�Ak�x���� + O��� + O�a� �49�

with

q��y� = �
x�X���

Rxy
t . �50�

q��y� is the probability that, starting from y�X, the system
is in phase X��� at time t�1 �14�. The system of Eq. �49� is
a vector equation

A�y� = �
�=1

m+1

q��y�A�x���� + O�a� . �51�

Moreover, one has

�
�=1

m+1

q��y� = �
�=1

m+1

�
x�X���

Rxy
t = 1 − �

x��X���
Rxy

t = 1 + O���

�52�

because of Eq. �46�.
Thus, Eq. �51� says that the vector A�y� for any y is in the

convex hull generated by the m+1 vectors A�x����, up to
O�a� corrections. Therefore, up to O�a�, there can be no
extremal points except those already among the �x���
, since
otherwise Eq. �51� would be an expression for one extremal
point in terms of the others. This implies that the phases are
unique �up to O�a��.
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F. Barycentric coordinates

Equation �51� says that the vector A�y� has barycentric
coordinates q��y� defined by Eq. �50�, with respect to the
vectors A�x���� in each phase X���, where it does not matter
which x����X��� is chosen, up to errors of order a. Moreover,
by Eq. �50�, q��y� is the probability that, starting from y, the
state of the system is in phase X��� at time t �where t is the
time scale used to define the phases�.

But this means that one can calculate these probabilities
q��y� in a geometric manner. We need to calculate the first m
left eigenvectors A1�y� , . . . ,Am�y� �after the trivial A0�. This
is sufficient to define the phases by our construction. Using
these phases the q��y� are the barycentric coordinates of A
with respect to the phases. Thus, the spectral properties and
convex hull construction provide a way to calculate the prob-
ability of reaching classes of intermediate asymptotic �time
scale t� states, that is to say, the phases.

G. Weight estimates inside and outside the phases

We wish to establish Eq. �46�.
�1� For each k, 1�k�m+1, the following relation is sat-

isfied by the points inside the phase:

�
x�X�k�

pyk
*

t �x� � 1 −
1 − �m

t

�
�53�

�cf. Eq. �25��.
�2� We now consider arbitrary x �not necessarily in one of

the phases�. By the spectral decomposition

pyk
*

t �x� = p0�x� + �
�=1

m

��
t p��x�A��yk

*� + �m+1
t Bxyk

*
�t� ,

1 � k � m + 1. �54�

With the notation

�n� � An−1�y�
*�, pk� � pk−1, Pj�x� � pyj

*
t �x� , �55�

Eq. �54� becomes

Pk�x� = �
�=1

m+1

p���x���k + O��� + O���, 1 � k � m + 1.

�56�

This is a linear system of m+1 equations for the pk�x�, and as
a consequence, one can solve for those quantities

pk��x� = �
�=1

m+1

P��x�c�k + O��� + O��� �57�

with c=�−1. That is, the first m+1 right eigenvector are ex-
pressible in terms of the distributions within each phase. This
is the generalization of Eq. �3.7� of Ref. �1�.

Remark. From this relation we can also see that each pk
�of the first m+1� right eigenvector is proportional to p0 on
each phase; that is, pk�x���const�� p0�x� for �x
 that consti-
tute a single phase. First recall that each py

�
*

t �x� looks locally

like p0 on its phase, because t is assumed large enough that
local equilibration is complete �that is the smallness of
�m+1

t B�. On the other hand, outside phase � each py
�
*

t �x� is

zero, since starting from the extremal on a time scale such
that �m

t is still close to unity there is little escape. Therefore,
by Eq. �57�, each pk �or pk�� is simply given as a sum of such
py

�
*

t �x��or P��x��.
�3� Next take the points x outside all phases and write

again, for any y† �inside or outside of any phase�

py†
t �x� = p0�x� + �

�=1

m

��
t p��x�A��y†� + �m+1

t Bxy†
�t� . �58�

In Eq. �58� replace the pk�x�’s by their values given in Eq.
�57�

py†
t �x� = �

k=0

m

�
�=1

m+1

�k
t Ak�y†�ck�py

�
†

t �x� + �m+1
t C�t�, �59�

where C�t� is a combination of the various B�t� and is assumed
to be bounded. But from Eq. �31�

�
x�X�k�

pyk
*

t �x� �
m

�
�1 − �m

t � , �60�

so from Eq. �59�

�
x��kX�k�

py†
t �x� � K

1 − �m
t

�
+ O��� , �61�

where K depends on the ck� and thus only on the geometry of
the A�yk

*� and is therefore O�1�. Therefore at time t, the prob-
ability of starting from y† �for any y†� to be outside of all
phases is small, when t is such that

1 − �m
t

�
� O�1�, and ��m+1

t ��B�t�� � O�1� . �62�

�4� We know that

�
x��kX�k�

p0�x� �
m

�
�1 − �m

t � + O��� . �63�

For this last estimate, the left hand side does not depend on t,
so that the right hand side can be taken a value of t such that
Eq. �62� is valid.

H. Basins of attraction

As noted above, our phases are not only the usual states in
a phase, but also include the short-time-scale basins of at-
traction for those phases. In this context “short-time-scale”
means O���, that is, at worst, the next slower mode after �m.
A particular example of this can occur when the extremum
point itself is not in what one usually calls the phase but only
gets there in O���. In this behavior, the extremal is like the
points that are not uniquely identified with any phase and
have nonzero probabilities for going to several. �See below,
Fig. 2, for an example of this.� The only difference between
these intermediate points and a not-in-the-phase extremal is
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that the barycentric coordinates for such an extremal have a
single 1, with the other entries zeros. The distinction between
basin-of-attraction states and those conventionally assigned
to the phase will lie in the size dependence of p0�x�—which
assumes that one is in a conventional context, where a ther-
modynamic limit is contemplated.

An illustration of an extremal that does not lie in the usual
phase can be found in our article on the definition of coarse
grains �3�. There we analyzed a one-dimensional Ising
model. Although there is no conventional phase transition in
this system, there is a marked difference in system behavior
for temperature above and below the value T=1 �in the units
we use there� even for moderate values of the number of
spins on the ring. In that paper we plotted the left eigenvec-
tor, A1�x�, as a function of magnetization. That is, x
= ��1 , . . . ,�N� is a spin configuration, with each �k= ±1, and
the magnetization is �k�k. Two plots, one below T=1 and
one above are shown in Fig. 1. In Ref. �3� we made the point
that the magnetization emerges from the slow eigenvalues ��
near 1� in a natural way. Surprisingly �to us� this turned out
to be more marked above T=1 than below. The close relation
of A1 to magnetization is evident in the T�1 figure. Below

T=1 there was a bunching of values near the maximum �and
symmetrically about the minimum� �15�. The maximum of
A1, which we use to label the phase, occurs for the state with
maximum magnetization, which, using analyticity-related
definitions, is not part of the phase in the thermodynamic
limit �16�. Nevertheless, this maximum of A1 �for T�1� dif-
fers little from A1�x� for other points, x.

I. Detailed balance for the principal portions of Rt

As above, assume that the first m+1 eigenvectors of R are
real and that in the spectral expansion the rest of R is small.
Then R itself nearly satisfies detailed balance. That is, for the
truncated R, Jxy =Rxy

t p0�y�−Ryx
t p0�x� is small.

The truncated spectral expansion for R is �cf. Eq. �33��
R̄xy

t = p0�x�+�k=1
m �k

t pk�x�Ak�y�, from which we have

J̄xy = R̄xy
t p0�y� − R̄yx

t p0�x�

= �
k=1

m

�k
t �pk�x�Ak�y�p0�y� − pk�y�Ak�x�p0�x�� . �64�

Case 1. x and y are in the same phase. Up to O���, Ak�y�
=Ak�x�, so that every term in the sum contains differences,
pk�x�p0�y�− pk�y�p0�x�. However, by the Remark following
Eq. �57�, on any particular phase pk�x� is proportional to
p0�x�, so these differences are zero.

Case 2. they are not in the same phase: then Rxy
t , which is

py
t �x�, is close to zero �on the order of ��. Therefore J̄xy is

also zero.
The foregoing observation must be used with caution. It

only asserts that J̄xy is small on scale of � or of �. However,
for times, �, such that 1−�m

� is not small, this conclusion
does not hold.

Remark. Although detailed balance implies that all eigen-
values of R are real, the converse is not true. �Thus the mere
fact that all eigenvalues in the truncated R are real does not
already imply detailed balance.� From numerical exploration
we have indeed found that there is a correlation between
�xy �Jxy� and ��Im�k� �for matrices generated in a certain ran-
dom way�; nevertheless it does happen that ��Im�k � =0,
while �xy �Jxy� is not �17�.

J. A reduced stochastic process

Until now we have focused on a time scale “t” such that
1−�m

t �1. Now take a time, T, such that this is not the case.
For such T, we can drop O��� and O��� terms in our repre-
sentation of R, but nevertheless need to retain 1−�m

T . This
also implies that for k=1, . . . ,m, Ak�y� can be replaced by
Ak�yj

*� for y�X�j�. Furthermore, for these longer times,
points not in any phase can be dropped, since they have long
before made their way to one or another phase.

Start with the standard spectral representation �dropping
O��� and O����

Rxy
T = �

k=0

m

�k
Tpk�x�Ak�y�

*�, for y � X���. �65�

Take x�X�k� and do a standard coarse graining �3�

FIG. 1. Ising model stochastic dynamics. A1 vs magnetization.
On the top is shown T�1, on the bottom T�1. In this figure an L2

normalization is used for Ak �see Ref. �5��.

MULTIPLE PHASES IN STOCHASTIC DYNAMICS:¼ PHYSICAL REVIEW E 73, 036124 �2006�

036124-7



R̃�k, j� = �
x�X�k�,y�X�j�

Rxy
T p0�y�


�j�

= �
�=1

m+1

��−1
T � �

x�X�k�
p���x��� �

y�X�j�
��j

p0�y�

�j� � , �66�

where 
�j���x�X�j�p0�x�. �N.B. 
�k�, the measure, and 
k,
the barycentric coordinate, are not the same.� Recall from the
observation following Eq. �57� that pn��x� is proportional to
p0�x� in each phase. Define the proportionality constant by
p��x�= p�kp0�x� �or p���x�= p�k� p0�x��. Doing the sums, Eq.
�66� becomes

R̃�k, j� = �
�=1

m+1

��−1
T p�k� 
�k����j


�j�

�j�

� = �
�=1

m+1

��−1
T p�k� 
�k���j ,

�67�

The fact that � jR̃�k , j�=1 follows immediately by summing
over x in Eq. �65�.

The stochastic matrix R̃ therefore describes the transitions
between phases on a much-elongated time scale.

III. ILLUSTRATIONS

In this section we illustrate the general principles with
specific numerical examples.

A. Multiple phases with relatively rapid internal relaxation

In Fig. 2 we show a three phase situation.
For simplicity we work with the matrix W, discussed in

the Remark just before Sec. II C. The form of the matrix
corresponding to this figure is schematically

W̃ =�
W1 � � �

� W2 � �

� � W3 �

� � � 0
� + � · random,

W = W̃ − diag�� W̃� . �68�

Thus three random matrices are produced and weakly
coupled to one-another: “�” is a generic small matrix and

need not be the same matrix for each appearance in W̃. Then
additional states are added to the state space �those appearing
after W3�. These have large one-way couplings to the other
states �“�,” a generic not-small matrix which again need not

be the same in each of its appearances in W̃� plus small
probabilities of return. Next small transition probabilities are
added to be sure the matrix is ergodic. Finally the actual

stochastic generating matrix, W, is computed from W̃ by
forming column sums and subtracting those sums on the di-
agonal �where for A an n�n matrix, �A is the n-component
object �xAxy and “diag” is a diagonal n�n matrix with its
argument on the diagonal and zeros elsewhere�.

Because this is a three-phase system �by construction� it is
sufficient to take A�x� to be two-dimensional, i.e., we plot

only A1�x� vs A2�x� for all x�X. This is Fig. 2. The vertices
of the triangle consist of the large number of points �dimen-
sions of the spaces associated with Wk, k=1,2 ,3�, while near
the middle of the triangle are the points associated with the
additional dimensions in the lower right hand corner of W.
Because the form of � was approximately the same for all of
them, they are near one another. If any of these points is
expressed in barycentric coordinates with respect to the ver-
tices, the coefficients give the probability that starting from
this point one reaches the respective phase �vertex�. To see
that the vertices are actually blurred a bit, we plot in Fig. 3 a
close-up of one of the vertices. This is the same matrix as in
Fig. 2.

In the next figures we do the same exercise but with four
phases, that is, Eq. �68� is modified by putting in a fourth
block, W4. Figure 4 shows the real part of the spectrum of W.
The spectrum is similar to the three-phase case, and as can be
seen from the numbers, one does not require extremes of
magnitude, large or small, to get useful information from the
geometrical construction. By construction, the W of Fig. 4
has three eigenvalues near the stationary one �0�, leading to
four phases. Figure 5 shows the convex hull of the points
A�x�. If one cuts off the plot in too low a dimension one gets
what is seen in Fig. 6. Here only A1 and A2 are plotted and as
can be seen there are four rather than three extrema. This is

FIG. 2. Plot using the first two left eigenvectors �A1 and A2� of
the transition matrix, R, for a three-phase system. A circle is placed
at each point �A1�x� ,A2�x�� for each of the N states, x, in X. The
lines connecting the circles are for visualization. The matrix R is
generated by combining four blocks, 3 of which are random matri-
ces, the fourth essentially zero. Then a bit of noise is added
throughout, with bigger terms for migration out of the fourth block.
Finally the diagonal is adjusted to make the matrix stochastic. This
leads to a pair of eigenvalues near 1. This plot using the first two
eigenvectors shows the extremal points to be clustering in three
regions, corresponding to the phases. The points not at the extrem-
als represent the fourth block, all of which head toward one or
another phase under the dynamics. For the particular matrix chosen,
they are about as likely to end in one phase as another. For all
eigenvector plots, the quantities plotted are pure numbers whose
scale is set by our normalization convention, discussed in Sec. II B.
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an illustration our need to have �m+1 much smaller than those
preceding it. If this condition is not satisfied, more extrema
appear. This is what Sec. II E was all about.

B. Hierarchical phases, no sharp cutoff in eigenvalue;
simplified spin glasses

For two classes of phenomena we do not expect the ei-
genvalues to drop off suddenly, as discussed in connection
with first order phase transitions. For spin glasses there is
expected to be a hierarchical sequence of metastable states.
For critical points the eigenvalues should have a power law
dropoff near the stationary state.

For hierarchical structures, already studied by us in Ref.
�5�, we do a variant of the geometrical construction just dis-
played. The overall W matrix has the following form:

W = �W1 � �

� W2 �

� � W3
�,

with each Wk of the form Wk = �w1 �

� w2
� , �69�

and ����1. For this structure it is instructive to introduce
time into the picture. The vectors to be plotted are A�t��x�
� (A1�x��1

t , . . . ,Am�x��m
t ). We have built the hierarchy to

have six phases; on a medium time scale three pairs of them
decay into a common branch, subsequent to which the three
branches merge into a single trunk. Since we cannot image
the five-dimensional structure, we take the projection of this

FIG. 3. Detail of the upper left vertex in Fig. 2. In actuality the
points in each phase cluster closely together and more than one
extremal might, in principle, occur. The precision is limited by the
non-negligible magnitudes of the quantities 1−�2 and �3.

FIG. 4. The first few eigenvalues of W for the four phase sys-
tem. For those eigenvalues having an imaginary part �which is not
the case for the first four�, only the real part is shown.

FIG. 5. �Color online� Convex hull of the set of points A�y� for
y�X. This is for a case of four phases and the figure formed in R3

is a tetrahedron.

FIG. 6. �Color online� For the four-phase case, if one plots only
in two dimensions one does not see only three extremal points. The
fourth apparently sticks out of the triangle formed by the others
�although it did not have to� and in a third dimension actually forms
a node of a tetrahedron �Fig. 5�.
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motion �as a function of time� on a particular plane. This is
shown in Fig. 7, where the circles represent the original
phases and the “�” is the final state, �0,0�.

C. Asymptotic probabilities

Consider a random walk on the landscape shown in
Fig. 8. The stationary state is shown in Fig. 9. There are
clearly four regions of attraction, which we identify as the
“phases” discussed in this paper. The spectrum of the �225
by 225� generator of the stochastic dynamics is �0,
exp�−16.0� , exp�−15.3� , exp�−14.8� , exp�+1.2� , . . . �, so

that this satisfies the conditions for having four well-
demarcated phases, which in this case represent regions of
attraction. Finally, in Fig. 10 we show how the methods of
this paper can be used to calculate the probability that from a
given initial condition one will arrive at one or another
asymptotic state. Each circle in the graph �which is a three-
dimensional plot of a tetrahedron; cf. Fig. 5� represents a
point on the 15 by 15 lattice and its location in the plot, when
expressed in barycentric coordinates �positive numbers that
add to 1� with respect to the extremals, gives its probability
of reaching a particular phase. In the graph we do not iden-
tify the particular circles, but the same computer program
that generated the graph can easily provide a table of prob-
abilities for each initial condition.

IV. PROSPECTS

The transition matrix for a stochastic process gives rise to
observables, namely its slowest left eigenvectors �in our con-

FIG. 7. Phases at successively later times for a hierarchical sto-
chastic matrix. As explained in the text this is a two-dimensional
projection of the five-dimensional plot of eigenvectors multiplied
by eigenvalue to the power t. On the shortest time scale there are 6
metastable phases �circles�; subsequently they merge into three and
finally into a single stationary state. The axes represent particular
linear combinations of eigenvectors and lack physical dimensions
�but have a scale determined by the normalization of Sec. II B�.

FIG. 8. �Color online� Landscape for a random walk on a 15 by
15 lattice. The distance unit on the lattice is arbitrary and the scale
of the potential chosen so as to give a dynamical spectrum illustrat-
ing our representation.

FIG. 9. Probability distribution for the stationary state of a walk
on the landscape shown in Fig. 8.

FIG. 10. Observable representation, in R3, of the states for the
walk on the landscape shown in Fig. 8. Each circle represents a
point on the 15 by 15 lattice and its position within the tetrahedron
�when expressed in barycentric coordinates with respect to the ex-
tremals� gives the probability of starting at that point and arriving at
one or another extremal. The plot is very much like that shown in
Fig. 5, but includes interior points. �Fig. 5 shows only the convex
hull.�
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vention Rxy =Pr�x←y��. For each x in the state space of the
process one can form a vector (A1�x� , . . . ,Am�x�) for integer
m, with Ak the left eigenvectors. Depending on the spectrum
of R, the space of these vectors can provide a graphic dem-
onstration of the phases �in the sense of phase transitions� of
this process. We call a plot of the points of the state space
using a collection of slow �left� eigenvectors an observable-
representation of state space.

We have shown how when there is a hierarchical structure
of phases that structure becomes manifest in the space of
observables. Our model for demonstrating this is artificially
constructed, but we expect that for systems of greater intrin-
sic interest the same features seen here should emerge. Thus,
spin glass models could be considered, for example the
Sherrington-Kirkpatrick model. Even for local spin glasses,
although the state space grows large quite rapidly, our
method requires little information from the transition matrix,
R. For example, a two-dimensional 4 by 4 spin glass would
involve a 216 by 216 matrix �216=65 536�, but it is a sparse
matrix, and all we would want to know would be the first
few eigenvectors, which is quite feasible. Now 4�4 may not
be much of a lattice, but the knowledge gained from the
corresponding observables would immediately give informa-
tion for the longest possible time scales. For the mean field
Sherrington-Kirkpatrick model one should be able to do even
better.

In the more traditional arena of stochastic processes, our
geometric construction allows one to read off the probabili-
ties of an initial point reaching any of various asymptotic
states, even when one does not have prior knowledge of what
those states are. We gave a simple example of a random walk
on a multiwell landscape, but other examples easily come to
mind.

At the mathematical level, we believe our assumptions are
stronger than they need to be. It is likely that hypothesis S
can be replaced by something weaker. We already have pre-
liminary results on this point in low dimension. Another
place where we have an implicit assumption �although we
did not emphasize it at the time� is in the proof of assertion
�1� of the lemma, where we make a generic assumption
about the geometry of the linear forms: specifically that
angles in the effective coordinate system are not such that
large values of h could be generated from small distances.

Cases where one has eigenvalues near one but there is not
a sharp dropoff after one particular eigenvalue are of great
importance in physical applications. Certainly for spin
glasses, although they are expected to show the hierarchical
structure discussed above, they would have a collection of
time scales of decreasing size �local relaxation times� with
no cutoff at a particular value. Also of interest is the case of
critical phenomena. Here, absent hierarchical structure, we
do not expect a small number of extrema to dominate. One
also has other properties, for example the divergence of spa-
tial correlation lengths, that on the face of it do not appear to
be directly related to the dynamics. Nevertheless, as shown
in Ref. �3�, much of this structure can be recovered from the
eigenvectors, so that a dynamical characterization of this
kind of transition, as we have done here for first order tran-
sitions, may well be possible.

Nevertheless, even where there is no phase transition, the
observable representation can provide an image of the state

space. For the case of Brownian motion on a ring, the tran-
sition matrix simply has constants just off the diagonal, as
well as in the corners to provide periodicity. We showed in
Ref. �3� how R can recover spatial structure, but a plot of
A1�x� vs A2�x�, as in Fig. 11, is even more direct. As can be
seen, this immediately gives the coordinate space ring. For
two dimensions we show �in the same figure� a slight variant
in which we have reflecting rather than periodic boundary
conditions.
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FIG. 11. Observable representation, in R2, of the states for
Brownian motion. The circle is for the one-dimensional case of a
walk on a ring. The rectangular figure is for a two-dimensional
random walk with nonperiodic boundary conditions.
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ing with stable ones and that our formalism abandons the ther-
modynamic limit. Rather, as should be evident here and in Ref.
�1�, a phase transition is an asymptotic concept, so that we
have no difficulty speaking of a phase transition in the one-
dimensional model.

�17� Here is a 3-by-3 example of a stochastic generating matrix �W,
not R� that provides a counterexample: W12=0.486, W13

=0.457, W21=0.231, W23=0.019, W31=0.607, W32=0.762
�with appropriate diagonal to satisfy �xWxy =0�. This has ei-
genvalues 0, −1.20 and −1.36, all real. The calculated positive
current is 0.458 times the permutation matrix with 1 in the
�1,3� position.
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